Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Mol Ther ; 31(3): 774-787, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2253487

ABSTRACT

Acute kidney injury occurs frequently in COVID-19 patients infected by the coronavirus SARS-CoV-2, and infection of kidney cells by this virus has been reported. However, little is known about the direct impact of the SARS-CoV-2 infection upon the renal tubular cells. We report that SARS-CoV-2 activated signal transducer and activator of transcription 3 (STAT3) signaling and caused cellular injury in the human renal tubular cell line. Mechanistically, the viral protein ORF3A of SARS-CoV-2 augmented both NF-κB and STAT3 signaling and increased the expression of kidney injury molecule 1. SARS-CoV-2 infection or expression of ORF3A alone elevated the protein level of tripartite motif-containing protein 59 (TRIM59), an E3 ubiquitin ligase, which interacts with both ORF3A and STAT3. The excessive TRIM59 in turn dissociated the phosphatase TCPTP from binding to STAT3 and hence inhibited the dephosphorylation of STAT3, leading to persistent STAT3 activation. Consistently, ORF3A induced renal injury in zebrafish and mice. In addition, expression of TRIM59 was elevated in the kidney autopsies of COVID-19 patients with acute kidney injury. Thus, the aberrant activation of STAT3 signaling by TRIM59 plays a significant role in the renal tubular cell injury caused by SARS-CoV-2, which suggests a potential targeted therapy for the renal complications of COVID-19.


Subject(s)
Acute Kidney Injury , COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , COVID-19/metabolism , STAT3 Transcription Factor/metabolism , Zebrafish , Acute Kidney Injury/etiology , Viral Proteins/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
2.
Toxicol In Vitro ; 83: 105394, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2115544

ABSTRACT

We previously reported that delivery of nickel nanoparticles (NiNPs) and bacterial lipopolysaccharide (LPS) into the lungs of mice synergistically increased IL-6 production and inflammation, and male mice were more susceptible than female mice. The primary goal of this study was to utilize an in vitro human lung epithelial cell model (BEAS-2B) to investigate the intracellular signaling mechanisms that mediate IL-6 production by LPS and NiNPs. We also investigated the effect of sex hormones on NiNP and LPS-induced IL-6 production in vitro. LPS and NiNPs synergistically induced IL-6 mRNA and protein in BEAS-2B cells. TPCA-1, a dual inhibitor of IKK-2 and STAT3, blocked the synergistic increase in IL-6 caused by LPS and NiNPs, abolished STAT3 activation, and reduced C/EBPß. Conversely, SC144, an inhibitor of the gp130 component of the IL-6 receptor, enhanced IL-6 production induced by LPS and NiNPs. Treatment of BEAS-2B cells with sex hormones (17ß-estradiol, progesterone, or testosterone) or the anti-oxidant NAC, had no effect on IL-6 induction by LPS and NiNPs. These data suggest that LPS and NiNPs induce IL-6 via STAT3 and C/EBPß in BEAS-2B cells. While BEAS-2B cells are a suitable model to study mechanisms of IL-6 production, they do not appear to be suitable for studying the effect of sex hormones.


Subject(s)
Lipopolysaccharides , Nanoparticles , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Epithelial Cells , Female , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Nickel , STAT3 Transcription Factor/metabolism
3.
Cells ; 11(9)2022 04 20.
Article in English | MEDLINE | ID: covidwho-1792800

ABSTRACT

Cannabinoids, mainly cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), are the most studied group of compounds obtained from Cannabis sativa because of their several pharmaceutical properties. Current evidence suggests a crucial role of cannabinoids as potent anti-inflammatory agents for the treatment of chronic inflammatory diseases; however, the mechanisms remain largely unclear. Cytokine storm, a dysregulated severe inflammatory response by our immune system, is involved in the pathogenesis of numerous chronic inflammatory disorders, including coronavirus disease 2019 (COVID-19), which results in the accumulation of pro-inflammatory cytokines. Therefore, we hypothesized that CBD and THC reduce the levels of pro-inflammatory cytokines by inhibiting key inflammatory signaling pathways. The nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling has been implicated in a variety of chronic inflammatory diseases, which results in the release of pyroptotic cytokines, interleukin-1ß (IL-1ß) and IL-18. Likewise, the activation of the signal transducer and activator of transcription-3 (STAT3) causes increased expression of pro-inflammatory cytokines. We studied the effects of CBD and THC on lipopolysaccharide (LPS)-induced inflammatory response in human THP-1 macrophages and primary human bronchial epithelial cells (HBECs). Our results revealed that CBD and, for the first time, THC significantly inhibited NLRP3 inflammasome activation following LPS + ATP stimulation, leading to a reduction in the levels of IL-1ß in THP-1 macrophages and HBECs. CBD attenuated the phosphorylation of nuclear factor-κB (NF-κB), and both cannabinoids inhibited the generation of oxidative stress post-LPS. Our multiplex ELISA data revealed that CBD and THC significantly diminished the levels of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) after LPS treatment in THP-1 macrophages and HBECs. In addition, the phosphorylation of STAT3 was significantly downregulated by CBD and THC in THP-1 macrophages and HBECs, which was in turn attributed to the reduced phosphorylation of tyrosine kinase-2 (TYK2) by CBD and THC after LPS stimulation in these cells. Overall, CBD and THC were found to be effective in alleviating the LPS-induced cytokine storm in human macrophages and primary HBECs, at least via modulation of NLRP3 inflammasome and STAT3 signaling pathways. The encouraging results from this study warrant further investigation of these cannabinoids in vivo.


Subject(s)
COVID-19 , Cannabidiol , Cannabinoids , Cannabidiol/pharmacology , Cannabinoids/pharmacology , Cytokine Release Syndrome , Cytokines/metabolism , Dronabinol/pharmacology , Humans , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , TYK2 Kinase/metabolism , TYK2 Kinase/pharmacology
4.
PLoS One ; 17(4): e0264979, 2022.
Article in English | MEDLINE | ID: covidwho-1789178

ABSTRACT

The global COVID-19 pandemic has claimed the lives of more than 750,000 US citizens. Dysregulation of the immune system underlies the pathogenesis of COVID-19, with inflammation mediated tissue injury to the lung in the setting of suppressed systemic immune function. To define the molecular mechanisms of immune dysfunction in COVID-19 we utilized a systems immunology approach centered on the circulating leukocyte phosphoproteome measured by mass cytometry. We find that although COVID-19 is associated with wholesale activation of a broad set of signaling pathways across myeloid and lymphoid cell populations, STAT3 phosphorylation predominated in both monocytes and T cells. STAT3 phosphorylation was tightly correlated with circulating IL-6 levels and high levels of phospho-STAT3 was associated with decreased markers of myeloid cell maturation/activation and decreased ex-vivo T cell IFN-γ production, demonstrating that during COVID-19 dysregulated cellular activation is associated with suppression of immune effector cell function. Collectively, these data reconcile the systemic inflammatory response and functional immunosuppression induced by COVID-19 and suggest STAT3 signaling may be the central pathophysiologic mechanism driving immune dysfunction in COVID-19.


Subject(s)
COVID-19 , Humans , Monocytes/metabolism , Pandemics , STAT3 Transcription Factor/metabolism , Signal Transduction , T-Lymphocytes
5.
Vet Microbiol ; 267: 109391, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1778497

ABSTRACT

Protein tyrosine phosphatase non-receptor type 14 (PTPN14) is a member of the protein tyrosine phosphatase (PTP) family which is a potential tumor suppressor. PTPs modulate the cellular level of tyrosine phosphorylation under normal and pathological conditions. Porcine epidemic diarrhea virus (PEDV) is one of the most important pathogens in the swine industry. Our previous membrane proteomics results showed that PTPN14 was markedly upregulated in PEDV-infected Vero cells. However, its biological roles in PEDV infection have not yet been investigated. In this study, we reported PTPN14 functions as a novel regulator of signal transducer and activator of transcription 3 (STAT3) phosphorylation during PEDV infection. Firstly, PTPN14 was markedly upregulated in PEDV-infected Vero cells with the decrease of STAT3 phosphorylation. Knockdown of PTPN14 or phosphatase inhibitor treatment promoted PEDV proliferation and increased the phosphorylation of STAT3 in Vero cells. On the contrary, overexpression of PTPN14 inhibits viral infection in Vero cells. Moreover, dephosphorylation of STAT3 by PTPN14 might occur in the cytoplasm but not in nucleus. Collectively, our results indicate that PTPN14 plays a negative role in regulating STAT3 activation in PEDV infected Vero cells and demonstrate another layer of regulation in PEDV infection.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Animals , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/physiology , Protein Tyrosine Phosphatases/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Swine , Tyrosine/metabolism , Vero Cells
6.
Sci Rep ; 12(1): 4867, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1758369

ABSTRACT

Leucine-rich α-2-glycoprotein 1 (LRG1) is a secreted glycoprotein that under physiological conditions is produced predominantly by the liver. In disease, its local induction promotes pathogenic neovascularisation while its inhibition leads to reduced dysfunctional angiogenesis. Here we examine the role of interleukin-6 (IL-6) in defective angiogenesis mediated by LRG1. IL-6 treatment induced LRG1 expression in endothelial cells and ex vivo angiogenesis cultures and promoted vascular growth with reduced mural cell coverage. In Lrg1-/- explants, however, IL-6 failed to stimulate angiogenesis and vessels exhibited improved mural cell coverage. IL-6 activated LRG1 transcription through the phosphorylation and binding of STAT3 to a conserved consensus site in the LRG1 promoter, the deletion of which abolished activation. Blocking IL-6 signalling in human lung endothelial cells, using the anti-IL6 receptor antibody Tocilizumab, significantly reduced LRG1 expression. Our data demonstrate that IL-6, through STAT3 phosphorylation, activates LRG1 transcription resulting in vascular destabilisation. This observation is especially timely in light of the potential role of IL-6 in COVID-19 patients with severe pulmonary microvascular complications, where targeting IL-6 has been beneficial. However, our data suggest that a therapy directed towards blocking the downstream angiopathic effector molecule LRG1 may be of greater utility.


Subject(s)
Glycoproteins , Interleukin-6 , Neovascularization, Pathologic , STAT3 Transcription Factor , COVID-19 , Endothelial Cells/metabolism , Glycoproteins/metabolism , Humans , Interleukin-6/metabolism , Neovascularization, Pathologic/metabolism , STAT3 Transcription Factor/metabolism
7.
Comput Biol Med ; 145: 105457, 2022 06.
Article in English | MEDLINE | ID: covidwho-1757246

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) keeps spreading globally. Chinese medicine (CM) exerts a critical role for the prevention or therapy of COVID-19 in an integrative and holistic way. However, mining and development of early, efficient, multisite binding CMs that inhibit the cytokine storm are imminent. METHODS: The formulae were extracted retrospectively from clinical records in Hunan Province. Clinical data mining analysis and association rule analysis were employed for mining the high-frequency herbal pairs and groups from formulae. Network pharmacology methods were applied to initially explore the most critical pair's hub targets, active ingredients, and potential mechanisms. The binding power of active ingredients to the hub targets was verified by molecular docking. RESULTS: Eight hundred sixty-two prescriptions were obtained from 320 moderate COVID-19 through the Hunan Provincial Health Commission. Glycyrrhizae Radix et Rhizoma (Gancao) and Pinelliae Rhizoma (Banxia) were used with the highest frequency and support. There were 49 potential genes associated with Gancao-Banxia pair against moderate COVID-19 patients. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that Gancao-Banxia might act via inflammatory response, viral defense, and immune responses signaling pathways. IL-6 and STAT3 were the two most hub targets in the protein-protein interaction (PPI) network. The binding of five active ingredients originated from Gancao-Banxia to IL-6-STAT3 was verified by molecular docking, namely quercetin, coniferin, licochalcone a, Licoagrocarpin and (3S,6S)-3-(benzyl)-6-(4-hydroxybenzyl)piperazine-2,5-quinone, maximizing therapeutic efficacy. CONCLUSIONS: This work provided some potential candidate Chinese medicine formulas for moderate COVID-19. Among them, Gancao-Banxia was considered the most potential herbal pair. Bioinformatic data demonstrated that Gancao-Banxia pair may achieve dual inhibition of IL-6-STAT3 via directly interacting with IL-6 and STAT3, suppressing the IL-6 amplifier. SARS-CoV-2 models will be needed to validate this possibility in the future.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Data Mining , Drugs, Chinese Herbal/pharmacology , Glycyrrhiza , Humans , Interleukin-6/metabolism , Medicine, Chinese Traditional/methods , Molecular Docking Simulation , Retrospective Studies , SARS-CoV-2 , STAT3 Transcription Factor/metabolism
9.
Nat Immunol ; 23(1): 62-74, 2022 01.
Article in English | MEDLINE | ID: covidwho-1514418

ABSTRACT

The molecular mechanisms governing orderly shutdown and retraction of CD4+ type 1 helper T (TH1) cell responses remain poorly understood. Here we show that complement triggers contraction of TH1 responses by inducing intrinsic expression of the vitamin D (VitD) receptor and the VitD-activating enzyme CYP27B1, permitting T cells to both activate and respond to VitD. VitD then initiated the transition from pro-inflammatory interferon-γ+ TH1 cells to suppressive interleukin-10+ cells. This process was primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating super-enhancers and recruiting several transcription factors, notably c-JUN, STAT3 and BACH2, which together with VitD receptor shaped the transcriptional response to VitD. Accordingly, VitD did not induce interleukin-10 expression in cells with dysfunctional BACH2 or STAT3. Bronchoalveolar lavage fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and showed de-repression of genes downregulated by VitD, from either lack of substrate (VitD deficiency) and/or abnormal regulation of this system.


Subject(s)
Interferon-gamma/immunology , Interleukin-10/immunology , SARS-CoV-2/immunology , Th1 Cells/immunology , Vitamin D/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Bronchoalveolar Lavage Fluid/cytology , COVID-19/immunology , COVID-19/pathology , Complement C3a/immunology , Complement C3b/immunology , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Lymphocyte Activation/immunology , Receptors, Calcitriol/metabolism , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , STAT3 Transcription Factor/metabolism , Signal Transduction/immunology , Transcription, Genetic/genetics
10.
Inflammation ; 45(1): 172-179, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1474041

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19) is associated with uncontrolled inflammatory responses. Loss of pulmonary angiotensin-converting enzyme 2 (ACE2) function has been associated with SARS-CoV-2 infection. The aberrant signalling and dysregulated inflammation characteristic of lung cancer have marked similarities with SARS-CoV-2 infection. Spearman's correlation analysis of The Cancer Genome Atlas (TCGA) datasets indicated an inverse correlation between ACE2 and IL6 in lung adenocarcinoma. qRT-PCR analysis revealed CoV-2-SRBD-mediated diminished ACE2 expression in lung cancer cells that was concomitant with increased IL6 expression. Western blot and qRT-PCR analysis suggested that treatment with methotrexate (MTx) dampened CoV-2-SRBD-mediated increase in JAK1/STAT3 phosphorylation, gp130, IL6, and folate-binding protein (FBP) expressions. MTx also rescued the diminished expression of ACE2 in CoV-2-SRBD transfected cells. As lung tissue injury in severely affected COVID-19 patients is characterised by aberrant inflammatory response, repurposing MTx as an effective therapy against critical regulators of inflammation in SARS-CoV-2 infection warrants investigation.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , Glycyrrhizic Acid/therapeutic use , Immunosuppressive Agents/therapeutic use , Interleukin-6/biosynthesis , Methotrexate/therapeutic use , A549 Cells , Adenocarcinoma of Lung/pathology , Anti-Inflammatory Agents/therapeutic use , COVID-19/immunology , COVID-19/pathology , Cell Line, Tumor , Cytokine Receptor gp130/biosynthesis , Folate Receptor 2/biosynthesis , HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/metabolism , Humans , Interleukin-6/immunology , Janus Kinase 1/metabolism , Lung Neoplasms/pathology , Phosphorylation/drug effects , SARS-CoV-2/drug effects , STAT3 Transcription Factor/metabolism , Spike Glycoprotein, Coronavirus/immunology
11.
J Ethnopharmacol ; 283: 114701, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1446835

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xuanfei Baidu Decoction (XFBD), one of the "three medicines and three prescriptions" for the clinically effective treatment of COVID-19 in China, plays an important role in the treatment of mild and/or common patients with dampness-toxin obstructing lung syndrome. AIM OF THE STUDY: The present work aims to elucidate the protective effects and the possible mechanism of XFBD against the acute inflammation and pulmonary fibrosis. METHODS: We use TGF-ß1 induced fibroblast activation model and LPS/IL-4 induced macrophage inflammation model as in vitro cell models. The mice model of lung fibrosis was induced by BLM via endotracheal drip, and then XFBD (4.6 g/kg, 9.2 g/kg) were administered orally respectively. The efficacy and molecular mechanisms in the presence or absence of XFBD were investigated. RESULTS: The results proved that XFBD can effectively inhibit fibroblast collagen deposition, down-regulate the level of α-SMA and inhibit the migration of fibroblasts. IL-4 induced macrophage polarization was also inhibited and the secretions of the inflammatory factors including IL6, iNOS were down-regulated. In vivo experiments, the results proved that XFBD improved the weight loss and survival rate of the mice. The XFBD high-dose administration group had a significant effect in inhibiting collagen deposition and the expression of α-SMA in the lungs of mice. XFBD can reduce bleomycin-induced pulmonary fibrosis by inhibiting IL-6/STAT3 activation and related macrophage infiltration. CONCLUSIONS: Xuanfei Baidu Decoction protects against macrophages induced inflammation and pulmonary fibrosis via inhibiting IL-6/STAT3 signaling pathway.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Inflammation/drug therapy , Macrophages/drug effects , SARS-CoV-2 , Signal Transduction/drug effects , Animals , Cell Survival/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Gene Regulatory Networks , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Phytotherapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , RAW 264.7 Cells , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
12.
Dis Model Mech ; 14(11)2021 11 01.
Article in English | MEDLINE | ID: covidwho-1430507

ABSTRACT

Vascular permeability triggered by inflammation or ischemia promotes edema, exacerbates disease progression and impairs tissue recovery. Vascular endothelial growth factor (VEGF) is a potent inducer of vascular permeability. VEGF plays an integral role in regulating vascular barrier function physiologically and in pathologies, including cancer, stroke, cardiovascular disease, retinal conditions and COVID-19-associated pulmonary edema, sepsis and acute lung injury. Understanding temporal molecular regulation of VEGF-induced vascular permeability will facilitate developing therapeutics to inhibit vascular permeability, while preserving tissue-restorative angiogenesis. Here, we demonstrate that VEGF signals through signal transducer and activator of transcription 3 (STAT3) to promote vascular permeability. We show that genetic STAT3 ablation reduces vascular permeability in STAT3-deficient endothelium of mice and VEGF-inducible zebrafish crossed with CRISPR/Cas9-generated Stat3 knockout zebrafish. Intercellular adhesion molecule 1 (ICAM-1) expression is transcriptionally regulated by STAT3, and VEGF-dependent STAT3 activation is regulated by JAK2. Pyrimethamine, an FDA-approved antimicrobial agent that inhibits STAT3-dependent transcription, substantially reduces VEGF-induced vascular permeability in zebrafish, mouse and human endothelium. Collectively, our findings suggest that VEGF/VEGFR-2/JAK2/STAT3 signaling regulates vascular barrier integrity, and inhibition of STAT3-dependent activity reduces VEGF-induced vascular permeability. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Capillary Permeability , Endothelium, Vascular/metabolism , STAT3 Transcription Factor/genetics , Vascular Endothelial Growth Factor A/metabolism , Animals , CRISPR-Cas Systems , Humans , Intercellular Adhesion Molecule-1/metabolism , Janus Kinase 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , STAT3 Transcription Factor/metabolism , Signal Transduction , Zebrafish
13.
Cell Death Differ ; 29(2): 420-438, 2022 02.
Article in English | MEDLINE | ID: covidwho-1406388

ABSTRACT

Inflammatory responses rapidly detect pathogen invasion and mount a regulated reaction. However, dysregulated anti-pathogen immune responses can provoke life-threatening inflammatory pathologies collectively known as cytokine release syndrome (CRS), exemplified by key clinical phenotypes unearthed during the SARS-CoV-2 pandemic. The underlying pathophysiology of CRS remains elusive. We found that FLIP, a protein that controls caspase-8 death pathways, was highly expressed in myeloid cells of COVID-19 lungs. FLIP controlled CRS by fueling a STAT3-dependent inflammatory program. Indeed, constitutive expression of a viral FLIP homolog in myeloid cells triggered a STAT3-linked, progressive, and fatal inflammatory syndrome in mice, characterized by elevated cytokine output, lymphopenia, lung injury, and multiple organ dysfunctions that mimicked human CRS. As STAT3-targeting approaches relieved inflammation, immune disorders, and organ failures in these mice, targeted intervention towards this pathway could suppress the lethal CRS inflammatory state.


Subject(s)
COVID-19/physiopathology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/metabolism , Inflammation/metabolism , STAT3 Transcription Factor/metabolism , Aged , Aged, 80 and over , Animals , COVID-19/metabolism , Caspase 8/metabolism , Cytokines/immunology , Cytokines/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , SARS-CoV-2/immunology , STAT3 Transcription Factor/genetics , Signal Transduction
14.
Sci Rep ; 11(1): 16174, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1351974

ABSTRACT

Oncostatin M (OSM) is a pleiotropic, interleukin-6 family inflammatory cytokine that plays an important role in inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis, and cancer progression and metastasis. Recently, elevated OSM levels have been found in the serum of COVID-19 patients in intensive care units. Multiple anti-OSM therapeutics have been investigated, but to date no OSM small molecule inhibitors are clinically available. To pursue a high-throughput screening and structure-based drug discovery strategy to design a small molecule inhibitor of OSM, milligram quantities of highly pure, bioactive OSM are required. Here, we developed a reliable protocol to produce highly pure unlabeled and isotope enriched OSM from E. coli for biochemical and NMR studies. High yields (ca. 10 mg/L culture) were obtained in rich and minimal defined media cultures. Purified OSM was characterized by mass spectrometry and circular dichroism. The bioactivity was confirmed by induction of OSM/OSM receptor signaling through STAT3 phosphorylation in human breast cancer cells. Optimized buffer conditions yielded 1H, 15N HSQC NMR spectra with intense, well-dispersed peaks. Titration of 15N OSM with a small molecule inhibitor showed chemical shift perturbations for several key residues with a binding affinity of 12.2 ± 3.9 µM. These results demonstrate the value of bioactive recombinant human OSM for NMR-based small molecule screening.


Subject(s)
Drug Discovery/methods , Oncostatin M/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Binding Sites , Cell Line, Tumor , Humans , Magnetic Resonance Spectroscopy/methods , Molecular Docking Simulation , Oncostatin M/chemistry , Oncostatin M/metabolism , Phosphorylation , Protein Binding , STAT3 Transcription Factor/metabolism , Small Molecule Libraries/chemistry
15.
Eur J Immunol ; 51(9): 2330-2340, 2021 09.
Article in English | MEDLINE | ID: covidwho-1261763

ABSTRACT

The molecular mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein was characterized to identify novel therapies. The impact of tofacitinib, IL-6R Ab, or TNFi therapy was determined on Spike protein or LPS/IFN-γ-induced signaling, inflammation, and metabolic reprogramming in MΦs and/or rheumatoid arthritis (RA) fibroblast-like synoviocyte (FLS). ACE2 frequency was markedly expanded in MΦs compared to T cells and RA FLS. Tofacitinib suppresses Spike protein potentiated STAT1 signaling, whereas this function was unchanged by TNFi. Tofacitinib impairs IL-6/IFN/LPS-induced STAT1 and STAT3 phosphorylation in RA MΦs and FLS. Interestingly, tofacitinib had a broader inhibitory effect on the monokines, glycolytic regulators, or oxidative metabolites compared to IL-6R Ab and TNFi in Spike-protein-activated MΦs. In contrast, all three therapies disrupted IFN-α and IFN-ß secretion in response to Spike protein; nonetheless, the IFN-γ was only curtailed by tofacitinib or IL-6R Ab. While tofacitinib counteracted MΦ metabolic rewiring instigated by Spike protein, it was inconsequential on the glycolysis expansion mediated via HK2 and/or LDHA in the activated RA MΦ and FLS. Nevertheless, the potentiated inflammatory response and the diminished oxidative phosphorylation modulated by Spike protein and/or LPS/IFN-γ stimulation in MΦs or RA FLS were reversed by tofacitinib. In conclusion, tofacitinib suppresses MΦ inflammation and immunometabolism triggered by Spike protein and may provide a promising strategy for COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , Macrophages/drug effects , Piperidines/pharmacology , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Arthritis, Rheumatoid/metabolism , COVID-19/metabolism , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Interleukin-6/metabolism , Macrophages/metabolism , Receptors, Interleukin-6/metabolism , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism
16.
J Hepatol ; 75(3): 647-658, 2021 09.
Article in English | MEDLINE | ID: covidwho-1228069

ABSTRACT

BACKGROUND AND AIMS: COVID-19 is associated with liver injury and elevated interleukin-6 (IL-6). We hypothesized that IL-6 trans-signaling in liver sinusoidal endothelial cells (LSECs) leads to endotheliopathy (a proinflammatory and procoagulant state) and liver injury in COVID-19. METHODS: Coagulopathy, endotheliopathy, and alanine aminotransferase (ALT) were retrospectively analyzed in a subset (n = 68), followed by a larger cohort (n = 3,780) of patients with COVID-19. Liver histology from 43 patients with COVID-19 was analyzed for endotheliopathy and its relationship to liver injury. Primary human LSECs were used to establish the IL-6 trans-signaling mechanism. RESULTS: Factor VIII, fibrinogen, D-dimer, von Willebrand factor (vWF) activity/antigen (biomarkers of coagulopathy/endotheliopathy) were significantly elevated in patients with COVID-19 and liver injury (elevated ALT). IL-6 positively correlated with vWF antigen (p = 0.02), factor VIII activity (p = 0.02), and D-dimer (p <0.0001). On liver histology, patients with COVID-19 and elevated ALT had significantly increased vWF and platelet staining, supporting a link between liver injury, coagulopathy, and endotheliopathy. Intralobular neutrophils positively correlated with platelet (p <0.0001) and vWF (p <0.01) staining, and IL-6 levels positively correlated with vWF staining (p <0.01). IL-6 trans-signaling leads to increased expression of procoagulant (factor VIII, vWF) and proinflammatory factors, increased cell surface vWF (p <0.01), and increased platelet attachment in LSECs. These effects were blocked by soluble glycoprotein 130 (IL-6 trans-signaling inhibitor), the JAK inhibitor ruxolitinib, and STAT1/3 small-interfering RNA knockdown. Hepatocyte fibrinogen expression was increased by the supernatant of LSECs subjected to IL-6 trans-signaling. CONCLUSION: IL-6 trans-signaling drives the coagulopathy and hepatic endotheliopathy associated with COVID-19 and could be a possible mechanism behind liver injury in these patients. LAY SUMMARY: Patients with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection often have liver injury, but why this occurs remains unknown. High levels of interleukin-6 (IL-6) and its circulating receptor, which form a complex to induce inflammatory signals, have been observed in patients with COVID-19. This paper demonstrates that the IL-6 signaling complex causes harmful changes to liver sinusoidal endothelial cells and may promote blood clotting and contribute to liver injury.


Subject(s)
COVID-19/complications , Endothelial Cells/pathology , Interleukin-6/physiology , Liver Diseases/etiology , SARS-CoV-2 , Adult , Blood Coagulation Disorders/etiology , Fibrinogen/analysis , Humans , Interleukin-6/blood , Janus Kinase 1/metabolism , Nitriles , Pyrazoles/pharmacology , Pyrimidines , Retrospective Studies , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , von Willebrand Factor/analysis
17.
Mod Pathol ; 34(8): 1444-1455, 2021 08.
Article in English | MEDLINE | ID: covidwho-1196829

ABSTRACT

Current understanding of the complex pathogenesis of COVID-19 interstitial pneumonia pathogenesis in the light of biopsies carried out in early/moderate phase and histology data obtained at postmortem analysis is discussed. In autopsies the most observed pattern is diffuse alveolar damage with alveolar-epithelial type-II cell hyperplasia, hyaline membranes, and frequent thromboembolic disease. However, these observations cannot explain some clinical, radiological and physiopathological features observed in SARS-CoV-2 interstitial pneumonia, including the occurrence of vascular enlargement on CT and preserved lung compliance in subjects even presenting with or developing respiratory failure. Histological investigation on early-phase pneumonia on perioperative samples and lung biopsies revealed peculiar morphological and morpho-phenotypical changes including hyper-expression of phosphorylated STAT3 and immune checkpoint molecules (PD-L1 and IDO) in alveolar-epithelial and endothelial cells. These features might explain in part these discrepancies.


Subject(s)
COVID-19/pathology , Cell Communication , Endothelial Cells/pathology , Epithelial Cells/pathology , Lung/pathology , B7-H1 Antigen/metabolism , Biopsy , COVID-19/metabolism , COVID-19/mortality , COVID-19/virology , Cytokines/metabolism , Endothelial Cells/metabolism , Endothelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Lung/metabolism , Lung/virology , Phosphorylation , Prognosis , STAT3 Transcription Factor/metabolism , Signal Transduction
18.
Curr Res Transl Med ; 69(2): 103289, 2021 05.
Article in English | MEDLINE | ID: covidwho-1179993

ABSTRACT

Elevated PCT level in COVID-19 was associated with higher risk of severe disease and higher risk of overall mortality. An increased PCT level of PCT in COVID-19 patients especially in severe cases would be assumed as bacterial coinfection. Could PCT level increase in SARS-CoV-2 infection without bacterial coinfection? Several SARS-CoV-2 proteins activate STAT3-dependent transcriptional pathways particularly in monocytes, that could lead to increased PCT production. STAT3α isoform could cause increased ACE2 expression, resulting more SARS-CoV-2 infected cells and further production of PCT.


Subject(s)
Bacterial Infections/diagnosis , COVID-19/diagnosis , Coinfection/diagnosis , Procalcitonin/blood , SARS-CoV-2/immunology , Bacterial Infections/blood , Bacterial Infections/complications , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/immunology , Coinfection/blood , Coinfection/complications , Humans , Immunity/physiology , Monocytes/metabolism , Monocytes/virology , Predictive Value of Tests , Procalcitonin/metabolism , STAT3 Transcription Factor/metabolism , Severity of Illness Index , Signal Transduction/immunology
19.
J Cell Mol Med ; 24(21): 12864-12868, 2020 11.
Article in English | MEDLINE | ID: covidwho-780917

ABSTRACT

The SARS-coronavirus 2 is the aetiologic agent COVID-19. ACE2 has been identified as a cell entry receptor for the virus. Therefore, trying to understand how the gene is controlled has become a major goal. We silenced the expression of STAT3α and STAT3ß, and found that while silencing STAT3α causes an increase in ACE2 expression, silencing STAT3ß causes the opposite effect. Studying the role of STAT3 in ACE2 expression will shed light on the molecular events that contribute to the progression of the disease and that the different roles of STAT3α and STAT3ß in that context must be taken in consideration. Our results place STAT3 in line with additional potential therapeutic targets for treating COVID-19 patients.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , STAT3 Transcription Factor/metabolism , Angiotensin-Converting Enzyme 2/genetics , Binding Sites , COVID-19 , Humans , MCF-7 Cells , Promoter Regions, Genetic , Protein Isoforms/genetics , Protein Isoforms/metabolism , SARS-CoV-2/drug effects , STAT3 Transcription Factor/genetics
20.
Med Hypotheses ; 144: 110262, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-753086

ABSTRACT

To date, the spread of SARS-CoV-2 infection is increasing worldwide and represents a primary healthcare emergency. Although the infection can be asymptomatic, several cases develop severe pneumonia and acute respiratory distress syndrome (ARDS) characterized by high levels of pro-inflammatory cytokines, primarily interleukin (IL)-6. Based on available data, the severity of ARDS and serum levels of IL-6 are key determinants for the prognosis. In this scenario, available in vitro and in vivo data suggested that myo-inositol is able to increase the synthesis and function of the surfactant phosphatidylinositol, acting on the phosphoinositide 3-kinase (PI3K)-regulated signaling, with amelioration of both immune system and oxygenation at the bronchoalveolar level. In addition, myo-inositol has been found able to decrease the levels of IL-6 in several experimental settings, due to an effect on the inositol-requiring enzyme 1 (IRE1)-X-box-binding protein 1 (XBP1) and on the signal transducer and activator of transcription 3 (STAT3) pathways. In this scenario, treatment with myo-inositol may be able to reduce IL-6 dependent inflammatory response and improve oxygenation in patients with severe ARDS by SARS-CoV-2. In addition, the action of myo-inositol on IRE1 endonuclease activity may also inhibit the replication of SARS-CoV-2, as was reported for the respiratory syncytial virus. Since the available data are extremely limited, if this potential therapeutic approach will be considered valid in the clinical practice, the necessary future investigations should aim to identify the best dose, administration route (oral, intravenous and/or aerosol nebulization), and cluster(s) of patients which may get beneficial effects from this treatment.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Inositol/therapeutic use , Interleukin-6/blood , Surface-Active Agents/therapeutic use , COVID-19/complications , Cytokines/blood , Disease Progression , Humans , Inflammation , Lung/metabolism , Lung/virology , Phosphatidylcholines/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols/metabolism , Prognosis , Respiratory Distress Syndrome/immunology , STAT3 Transcription Factor/metabolism , Signal Transduction , X-Box Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL